

CAE-basierte Vorhersage von Bauteileigenschaften

Ziel → Numerische Methoden zur exakten Abbildung von Prozessketten (Kaltumformung, Zerspanung) und Bauteilprüfung (Struktursimulation) zur Ausnutzung von Bauteileigenschaften für neue Leichtbaupotentiale

Forschungsinstitute

Felix Kolpak

Florian Vogel Marcel Tiffe Maximilian Metzger

Nadja Missal

Forschungsvereinigungen

Forschungsvereinigung Stahlanwendung e. V.

Im Folgenden werden Ergebnisse aus dem Forschungsprojekt Leichtbau durch gezielte Einstellung lokaler Bauteileigenschaften mit optimierten Umform- und Zerspanprozessen (P 1057 / IGF-Nr. 18225 N) präsentiert.

Lokale Bauteileigenschaften in FEM-Umformsimulationen

Vorteile der Kaltumformung

- Endkonturnahe Fertigung
- Kaltverfestigung
- Belastungsgerechter Faserverlauf

FEM-basierte Bauteilauslegung (St. d. T.)

- Umformgeschichte wird nicht berücksichtigt (Mehrstufigkeit!)
- Werkstoffverhalten wird nur unzureichend genau abgebildet

Leichtbaupotentiale werden nicht ausgeschöpft

Experimentelle Untersuchungen

Versuche

- Umformversuche (Voll-Vorwärts-Fließpressen)
- "Standard-Fließkurven" (IFU)
- Reibwertermittlung durch Ringstauchversuche

Lokale Bauteileigenschaften

- Mikroskopie \rightarrow Faserverlauf
- Eigenspannungsmessung (Bohrlochmethode)
- Marko-/Mikrohärtemessungen
- Richtungsabhängige Festigkeit

CAE-basierte Vorhersage von Bauteileigenschaften

3

4

Einfluss kinematischer Verfestigung auf die Bauteilfestigkeit

Verfestigungsmodelle und Parameterermittlung

Parameterermittlung für kombinierte Verfestigungsmodelle

- Isotrope
 Verfestigung
- 1. Zugversuche
- 2. <u>Zugversuche mit</u> <u>fließgepressten</u> <u>Proben</u>
- 3. Druckversuche

Parameterermittlung und gezielte Auswahl eines geeigneten Extrapolationsmodells

Parameterermittlung für kombinierte Verfestigungsmodelle

- Kinematische Verfestigung
- 1. Zugversuche
- 2. Zugversuche mit fließgepressten Proben
- 3. <u>Druckversuche mit</u> vorgezogenen Proben
- 4. Druckversuche mit fließgepressten Proben

Parameterermittlung für kombinierte Verfestigungsmodelle

- Kinematische Verfestigung
- 1. Zugversuche
- 2. Zugversuche mit fließgepressten Proben
- 3. Druckversuche mit vorgezogenen Proben
- 4. <u>Druckversuche mit</u> <u>fließgepressten</u> <u>Proben</u>

Einfluss kinematischer Verfestigung auf die Festigkeit

Einfluss kinematischer Verfestigung auf die Festigkeit

Einfluss kinematischer Verfestigung auf Eigenspannungen

Fazit

- Charakterisierung lokaler Bauteileigenschaften am Beispiel des Voll-Vorwärts-Fließpressens
- Entwicklung einer <u>neuen Methodik zur Charakterisierung</u> kinematischer Verfestigung f
 ür Werkstoffe der Kaltmassivumformung
- Deutliche Verbesserung der Vorhersagegüte bereits mit <u>einfachen Modellen</u> (Verfügbar in meisten FE-Programmen z.B. Abaqus, DEFORM, Simufact, …)
- Kinematische Verfestigung hat signifikanten Einfluss auf die <u>Vorhersagegüte lokaler</u> <u>Bauteileigenschaften</u> bzgl.
 - → Festigkeit → Eigenspannungen

Simulation von Prozessketten kann langfristig nur unter Berücksichtigung der gesamten Werkstoffhistorie erfolgen!

> Grundanforderung für CAE-basierten Leichtbau

Simulationssystem: DEFORM[®]-2D

Fließspannungsmodell: Johnson-Cook

Johnson-Cook-Fließspannungsmodell $<math display="block">\sigma = (A + B \cdot \overline{\phi}^{n}) (1 + C \cdot ln \ \overline{\phi}) (1 - T^{*m})$ Materialparameter A, B, n, C, m $(A + B \cdot \overline{\phi}^{n}) \qquad (1 - T^{*m})$

Anpassung des Fließspannungsmodells

Angepasstes Johnson-Cook-Fließspannungsmodell

 $\sigma = TKEM \cdot (1 + C \cdot \ln \bar{\phi}) \cdot (1 - T^{*m})$

TKEM: $\alpha \cdot (K \cdot (\varphi + \varphi_0)^n) + (1 - \alpha) \cdot (b - (b - \alpha) \cdot e^{-c\varphi})$

$$(1 + C \cdot \ln \overline{\dot{\phi}}) (1 - T^{*m})$$

Orthogonal-Schnittversuche

Anpassung des Fließspannungsmodells

Angepasstes Johnson-Cook-Fließspannungsmodell

 $\sigma = TKEM \cdot (1 + C \cdot \ln \overline{\dot{\phi}}) \cdot (1 - T^{*m})$

TKEM:
$$\alpha \cdot (K \cdot (\varphi + \varphi_0)^n) + (1 - \alpha) \cdot (b - (b - a) \cdot e^{-c\varphi})$$

$$(1 + C \cdot \ln \dot{\phi}) (1 - T^{*m})$$

FE-Zerspansimulation (Orthogonaler-Schnitt)

Vergleich Zerspankraftkomponenten

Vergleich Zerspankraftkomponenten

Vergleich Zerspankraftkomponenten

Übernahme des Simulationsmodells aus FE-Umformsimulation

Vorgehen Analytische-Modellierung

Abstand Minimum zur Oberfläche

Einfluss v_c und h auf Lage Minima und Maxima - Axialspannung

Einfluss a_p , v_c und h auf Minima - Axialspannung

Einfluss v_c und h auf Minima und Maxima - Axialspannung

Mapping der lokalen Bauteileigenschaften auf FEM-Netz für strukturmechanische Simulation

Simulationsmodell in DEFORM und Ansys Workbench

Wichtigste Ergebnisse zum Mapping der Bauteileigenschaften

- Die Übertragung der Vorverfestigung vom DEFORM in Ansys Workbench ist möglich, kann jedoch *nicht automatisiert* werden, weil jeder Übertragungsschritt *manuell* nachgearbeitet oder ausgeführt werden soll
- Die Übertragung ist nicht geeignet f
 ür komplexe Geometrien mit kleinen Radien oder scharfen Kanten
 Nicht geeignet

- Die Untersuchung zeigte, dass der Unterschied der Simulationsergebnisse zwischen DEFORM und Ansys weniger als 5% beträgt
- Aus dem Vergleich der Simulationsergebnisse kann beschlossen werden, dass die strukturmechanische Analyse in DEFORM durchgeführt werden kann
- > DOE- und Sensitivitätsanalyse der gesamten Prozesskette in DEFORM ist möglich

Simulationsergebnisse mit untersch. Materialmodellen

Simulationsparameter, 2D; DEFORM:

Halbzeug: elasto-plastic; Werkzeug: rigid; Netzelemente: 2.000;

Werkstoff: 16MnCr5; Reibung: Coulomb 0,07; Umformgrad: 0,65;

Verfestigungsmodell:

- Isotrop
- Isotrop-kinematisch

Simulationsergebnisse mit untersch. Materialmodellen

Simulationsergebnisse mit untersch. Materialmodellen

- Für die betrachtete Biegebeanspruchung tritt die Bauteilverformung bei der Anwendung des isotropkinematischen Verfestigungsmodells früher als beim Einsatz des isotropen Verfestigungsmodells ein
- Während der Simulation wurde festgestellt, dass Eigenspannungen keinen signifikanten Einfluss auf den Prozessverlauf zeigen

CAE-basierte Prozessoptimierung

Zusammenfassung

- Entwicklung einer neuen Methodik zur Charakterisierung kinematischer Verfestigung für Werkstoffe der Kaltmassivumformung
- Durch Berücksichtigung der kinematischen Verfestigung ermöglicht eine Verbesserung der Vorhersagegüte von Bauteileigenschaften
- Realitätsnahe Simulation der Spanbildung bei der Bearbeitung von 16MnCr5
- Simulationsgestützte Vorhersage der Beeinflussung umformtechnisch eingestellter Bauteileigenschaften durch Zerspanprozesse möglich
- Es wurde die Datenübertragung zwischen FEM-Systemen für die Prozesssimulation (Umformung/Zerspanung) und für die strukturmechanische Berechnung realisiert
- Im Zuge der CAE-basierte Prozesskettenauslegung wurde eine verkettete Simulation der Umformung, Zerspannung und Betriebsbelastung durchgeführt; die Gewichtsoptimierung der Bauteile erfolgte in OptiSLang an einem Metamodell

Danksagung

Bundesministerium für Wirtschaft und Energie

Forschungsnetzwerk Mittelstand

Industrielle Gemeinschaftsforschung

Forschungsvereinigung Stahlanwendung e. V.

