

Umformtechnisch hergestellte Getriebewelle

Ziel → Gezielte Einstellung der Prozessparameter (Werkzeug, Werkstoff, Reibung, Stufenabfolge) und Ausnutzung der lokalen Kaltverfestigung zur Einsparung von Gewicht oder Substitution von Wärmebehandlungen

eförd	ert durch:	Earachungoverhund
₩	Bundesministerium für Wirtschaft	Porschungsverbund
	und Energie	
ıfgrund eines Beschlusses 25 Deutschen Bundestages		massiverLEICHTBAU

Forschungsinstitute

Felix Kolpak **Oliver Napierala** Christoph Dahnke

Forschungsvereinigungen

Forschungsvereinigung Stahlanwendung e. V.

Im Folgenden werden Ergebnisse aus dem Forschungsprojekt Erweiterung technologischer Grenzen bei der Massivumformung in unterschiedlichen Temperaturbereichen (P 1057 / IGF-Nr. 18229 N) präsentiert.

Konzept zur Getriebewellenfertigung

Vorgehen

Einflüsse auf die Festigkeit im Randbereich

Werkstoff

Prozessroute

Werkzeuggeometrie

Schmierung / Reibung

Numerische Untersuchungen

Konventionelle Getriebewelle (Referenz)

Einfluss der Prozessroute auf den Umformgrad

Ableitung der wesentlichen Einflussfaktoren

Parameter	Konventionell (zweistufig)	Zweistufig optimiert	Einstufig optimiert				
<i>r</i> ₁	2 mm	1 mm	1 mm				
$2\alpha_1$	100°	145°	145°				
<i>r</i> ₂	3 mm	1 mm	1 mm				
2 α ₂	80°	145°	60°				
Vergleichsumformgrad φ im Randbereich							
Großer Absatz	1,5	3,7 (+ 146%)	3,7 (+ 146%)				
Kleiner Absatz	1,3	3,3 (+ 154%)	4,2 (+ 223%)				
(Großer Klei	ner					

Vergleichsumformgrad im Randbereich – Einflüsse:

- Steigt mit zunehmender Reibung µ
- Steigt mit abnehmendem Radius *r*
- Steigt mit zunehmendem Schulteröffnungswinkel α
- Höhere Dehnung bei einstufiger Prozessroute

Umformtechnisch hergestellte Getriebewelle

Experimentelle Validierung

Versuchsreihe 1

Werkstoff	16MnCr5						
Prozessroute	Zweistufig konv.		Zweistu	ufig opt.	Einstufig opt.		
Schmierstoff	MoS_2	Wachs	MoS_2	Wachs	MoS_2	Wachs	
Abkühlen	Х		Х				

Versuchsreihe 2

Werkstoff	18CrNiMo7-6					
Prozessroute	Zweistufig konv.	Zweistufig opt.	Einstufig opt.			
Schmierstoff	MoS ₂	MoS ₂	MoS ₂			

Versuchsreihe 3

Werkstoff	100Cr6					
Prozessroute	Zweistufig konv.	Zweistufig opt.	Einstufig opt.			
Schmierstoff	MoS ₂	MoS ₂	MoS ₂			

Hydraulische Ziehpresse M+W BZE 1000-30.1.1

Festigkeitsverlauf Simulation – 16MnCr5

- Optimierte Prozessvarianten f
 ühren zu steileren Festigkeitsanstieg
 über Bauteilradius
- Experimentelle Validierung über Härtemessungen ($k_{\rm f} \sim {\rm HV}$)

- Numerische Vorhersagen bzgl. Härtesteigerung bestätigt
- **ABER:** Kaltverfestigung kann Einsatzhärten nicht ersetzen (Grundlage.: 800 HV Oberflächenhärte)

Härte über Umformgrad

Härte ist bei φ = 1 für alle Werkstoffe nahezu gesättigt

Umformtechnisch hergestellte Getriebewelle

Festigkeit

- Werkstoffe zeigen Verfestigungspotential, selbst für $\varphi \ge 1,0$
- Zugfestigkeit steigt, trotz Sättigung der Härte
- Unterschied zwischen Zug- und Druckfestigkeit
 → Bauschingereffekt

Festigkeit

- Werkstoffe zeigen Verfestigungspotential, selbst für $\varphi \ge 1,0$
- Unterschied zwischen Zug- und Druckfestigkeit
 → Bauschingereffekt
- Zugfestigkeit steigt, trotz Sättigung der Härte

Zusammenfassung: Ergebnismatrix

Zielgröße

16MnCr5	Hä	rte	Rauheit		Eigenspannungen		Mikrostruktur	
Absatz	Groß	Klein	Groß	Klein	Groß	Klein	Groß	Klein
konventionell			Referenz					
zweistufig optimiert	+	+		+	o		+	+
einstufig optimiert	+	+	+ +	+ +	+	+	-	+
18CrNiMo7-6	Hä	rte	Rauheit		Eigenspannungen		Mikrostruktur	
Absatz	Groß	Klein	Groß	Klein	Groß	Klein	Groß	Klein
konventionell			Referenz					
zweistufig optimiert	0	+		++	-	-	+	+
einstufig optimiert	+	+	+	++	+	+	+	+
100Cr6	Hä	rte	Rauheit		Eigenspannungen		Mikrostruktur	
Absatz	Groß	Klein	Groß	Klein	Groß	Klein	Groß	Klein
konventionell		-	Referenz					
zweistufig optimiert	+	+		+			+	+
einstufig optimiert	++	++	0	-	++	++	-	+

Zwischenfazit

- Einflüsse auf die Oberflächenfestigkeit fließgepresster Getriebewellen
 - Werkstoff
 - Werkzeuggeometrie

(16MnCr5, 18CrNiMo7-6, 100Cr6) (Schulteröffnungswinkel, Werkzeugradien)

- Prozessroute
- Schmierstoff

- (einstufig / zweistufig) (Wachs / MoS₂)
- Optimierte Prozessvarianten führen zu besseren Ergebnissen bzgl.
 - Härte
 - Rauheit
 - Festigkeit

im Vergleich zu konventioneller Methode

- ABER: Prozessvarianten mit optimierter Kaltverfestigung können Wärmenachbehandlung (z.B. Einsatzhärten) <u>nicht</u> ersetzen!
 - → Alternative (lokale) Wärmebehandlungsstrategien (z.B. Induktionshärten)?
 - → Übertragung der Erkenntnisse auf Verfahren ohne Wärmebehandlung oder Bauteilen bei denen konventionell Vergütungsstähle zum Einsatz kommen

Oberflächenfestwalzen fließgepresster Wellen

Ziel → Gezielte Einstellung der Prozessparameter (Werkzeug, Werkstoff, Walzkraft, Vorschub, Überrollungszahl) zur Einsparung von Gewicht oder Substitution von Wärmebehandlungen

Vorgehen

Vergleich Werkzeugkonzepte

Diamant-Glättwerkzeug

- Federnd gelagert
- Walzkraft zwischen 50-570 N
- Bearbeitbare Werkstoffe mit Härten bis 64 HRC
- Einstellung über Zustellung und Feder
- Schmierung über MMKS mit Schneidöl

Hartmetallkugel

- Hydrostatisch gelagert
- Walzkraft zwischen 0-1,4kN (600 bar)
- Bearbeitbare Werkstoffe mit Härten bis 65 HRC
- Einstellung über Druckregelung
- Selbstschmierung der Kugel (HG6)

Einfluss der Walzkraft

Eigenspannungen (Diamantspitze) Anzahl Walzkraft Vorschub Überrollungen 50 50 50 0 0 0 in MPa Axialspannung in MPa Axialspannung in MPa -50 -50 -50 -100 -100 -100 Axialspannung -150 -150 -150 -200 -200 -200 -250 -250 -250 -300 -300 -300 -350 -350 -350 2 3 200 300 400 0,05 0,10 0,20 ungeungeungewalzt walzt walzt Überrollungsanzahl n Walzkraft in N Vorschub in mm/U 18CrNiMo7-6

- Durchweg Einbringung von hohen Druckeigenspannungen
- Einfluss der variierten Parameter generell gering

100Cr6

Fazit (Einzelparameter-Variation)

Kein Härtemaximum unterhalb der Oberfläche erkennbar

- → Verfestigungspotential noch nicht ausgeschöpft!
- → Weitere Härtesteigerung nur durch Kombination verschiedener Parameter möglich

Maximal erzielte Härtesteigerungen (Mehrparameter-Variation)

Einfluss der Rundlaufabweichung (40 µm) auf die Rauheit

Einfluss auf Eigenspannungen

Festwalzen vergüteter / fließgepresster Teile

- Festwalzen gehärteter Wellen aus 100Cr6
 - Proben vergütet bis 340 HV10
- Festwalzen fließgepresster Demonstratoren
 - Getriebewellen (IUL)
 Kaltverfestigt 336-368 HV10
 - Kolbenbolzen (IFU)
- Optische Untersuchungen zum Werkzeugverschleiß

Festwalzen vergüteter Teile

Umformtechnisch hergestellte Getriebewelle

Vorschub v = 0.057 mm/U

Getriebewelle (IUL)

Überrollungen n = 1

Forschungsverbund massiverLEICHTBAU

Festwalzen fließgepresster Teile Werkstoff: 16MnCr5 Napf-Rückwärts-16MnCr5 Fließgepresst 100Cr6 350 Härte n.d. Fließpressen: 400 Großer Absatz 200 HV10 300 350 Schlanker Absatz Vorschub v = 0.06 mm/U300 250 Härte in HV10 Härte in HV10 Überrollungen n = 1250 200 200 150 150 100 550 N 100 50 Abplatzungen 50 0 0 Fließgepresst 137 N 412,5 N Fließgepresst 137 N 275 N 412,5 N 275 N 550 N 550 N /ungewalzt /ungewalzt 412,5 N Ausgangsparameter: Vorschub: 0.075/0.057 mm/U Hydrostatisch gelagerte Kugel Überrollungszahl: 1 Kugeldurchmesser: 4 mm Walzkraft 275 N Werkstoff: 16MnCr5 Härte n.d. Fließpressen: 279 HV10

Umformtechnisch hergestellte Getriebewelle

412,5 N

550 N

275 N

137,5 N

137,5 N

Kolbenbolzen (IFU)

Zusammenfassung

Grundlagen

- Ideale Werkzeugauswahl abhängig von
 - Werkstoff
 - Probengeometrie (Zugänglichkeit)
 - Formabweichungen (z.B. Rundlaufabweichung)
- Walzkraft hat den größten Einfluss auf die Randhärte
 Alleinige Steigerung der Walzkraft führt <u>nicht</u> zum Härtemaximum
- Mehr-Parameter-Variation

 nahezu Verdopplung der Härte (ohne negative Beeinflussung sekundärer Eigenschaften)

Festwalzen gehärteter und fließgepresster Bauteile

- Vergütete Wellen können durch Festwalzen weiter verfestigt werden
- Umformvermögen fließgepresster Wellen ist ausgeschöpft → Oberflächenversagen

Danksagung

Bundesministerium für Wirtschaft und Energie

Forschungsnetzwerk Mittelstand

Industrielle Gemeinschaftsforschung

Forschungsvereinigung Stahlanwendung e. V.

