

Leichtbau am Beispiel hybride Radnabe

Ziel: Verfahrensbewertung des Verbundschmiedens zur Herstellung hybrider Bauteile

Gefördert durch:	
Bundesministerium für Wirtschaft und Energie	Forschungsverbund
aufgrund eines Beschlusses des Deutschen Bundestages	massiverLEICHTBAU

Forschungsinstitut

Julian Diefenbach

Philipp Kuwert

Forschungsvereinigungen

Forschungsvereinigung Stahlanwendung e. V.

Im Folgenden werden Ergebnisse aus den Forschungsprojekten Untersuchungen zum Verbundschmieden unterschiedlicher artfremder und artgleicher Materialkombinationen (P 1055 / IGF-Nr. 19040 N) präsentiert.

Einführung und Konzept

Dipl.-Ing. Julian Diefenbach

Abschlusstreffen massiver Leichtbau

IN A DAMAGE

 $\dot{\varphi} = 0, 1 1/s$

 $\dot{\varphi} = 1,01/s$

 $\dot{\varphi} = 10, 0 \ 1/s$

Forschungsvorhaben

Forschungsvorhaben

Stahl-Aluminium Radnabe	Stahl-Stahl Radnabe		Monoradnabe
	Werkstoff	Gewicht	Vorteil
Stahl-Aluminium Radnabe	C60 / AW 6182	1,02 kg	Gewichtsreduzierung
Stahl-Stahl Radnabe	C60 / 30CrNiMo8	1,98 kg	Verbesserte Bauteileigenschaften
Monoradnabe	C60	1,98 kg	Referenz

 Durchführung des Vorhabens zur Potentialanalyse der werkstoffspezifischen Vorteile der jeweiligen Materialkombination

Konzeptvorstellung des Materialverbunds

- Maximaler stofflicher Leichtbau durch komplexen Fügezonenverlauf
- Paralleler Stoff- und Kraftschluss zur Erhöhung der Bauteilsicherheit

Fügestrategie:

- Stoffschluss an planaren Flächen (Kennzeichnung:)
- Kombinierter Kraft-/Formschluss im Mantelbereich (Kennzeichnung: |)
- Umsetzung durch gezielte geometrische Halbzeugauslegung und Gestaltung des Umformprozesses
- Gegenform im Lagerhalbzeug notwendig f
 ür die Einstellung eines Querpressverbands

Angestrebter Mischverbund am CAD-Modell

Konzeptvorstellung des Materialverbunds

 Verbundstrategie benötigt Vorgeometrie in den Halbzeugen f
ür artgleiche und artfremde Materialkombinationen

Prozesskette für das Verbundschmieden

- Einschmieden des FHZ abhängig vom mechanischen Widerstand (Fließspannung)
- Niedriger Widerstand im FHZ und hoher Widerstand im LHZ der Nut notwendig
- Fließkurvenaufnahme zur Prozessfensteranalyse notwendig

Konzeptvorstellung des Materialverbunds

Verbundgestaltung und Eigenschaften

Philipp Kuwert, M. Eng.

Abschlusstreffen massiver Leichtbau

Prozesskette für das Verbundschmieden

Erfolg der Verbundstrategie maßgeblich von numerischer Vorformauslegung abhängig

Kontrollaspekte zur Bildung stoff- und kraftschlüssiger Verbindungen:

- Ausreichende Oberflächenvergrößerung
- Hoher Kontaktdruck
- Hohe Umformtemperaturen
- Erhalt der inneren Nut
- Ausreichende thermische Schrumpfung des LHZ während des Abschreckens

- Annäherung des oberen Halbzeugs an Endkontur f
 ür das kraftschl
 üssige F
 ügen
- Vorherige Formgebung des LHZ begünstigt den Verbundschmiedeprozess
- Herstellung des Querpressverbands nur möglich bei geringer Umformung des LHZ

Abschließende Prozessfolge

- Gesenk schließen
- Formgebung der unteren Vorform
- Einschmieden des unteren Werkstoffs
- Aufschrumpfen des oberen Werkstoffs durch Abschrecken

Umformsimulation für das Verbundschmieden artfremder und artgleicher Materialkombinationen

Spindelpresse SPR 500

Werkzeugsystem für das Verbundschmieden

Spindelpresse SPR 500

Video: Herstellung der Stahl-Aluminium Radnabe

Video: Herstellung der Stahl-Stahl Radnabe

- Herstellung der Stahl-Aluminium Radnaben ohne Prozessschwierigkeiten
- Fügen der beiden Stahlwerkstoffe nur bei gemeinsamer Erwärmung und Zusammenführung unter Schutzgasatmosphäre möglich

Darstellung der Stahl-Aluminium (links), Stahl-Stahl-(rechts) und Monoradnabe (Mitte)

Verbundanalyse in weiteren metallografischen und mechanischen Untersuchungen

Eigenschaften der Stahl-Aluminium Radnabe

- Lichtmikroskopaufnahmen zeigen kontinuierlichen Verlauf eines Luftspalts bedingt durch Zunder
- Intermetallische Phasen (IMP) nur innerhalb des Bohrungsbereichs mit einer Dicke von 16,33 µm vorhanden
- Ausbildung des IMP-Typ von den Versuchsbedingungen abhängig (Umformtemperaturen und chemischer Zusammensetzung)
- Charakterisierung der IMP-Phasen erforderlich aufgrund der Übertragbarkeit auf zukünftige Prozessauslegungen

Stahl-Aluminium Radnabe (Halbschnitt)

Charakterisierung mittels EDX-Analysen und Mikrohärtemessungen

Eigenschaften der Stahl-Aluminium Radnabe

Eigenschaften der Stahl-Stahl Radnabe

- Geringe Luftspalte im Fügeverbund aufgrund Schutzgaseinschlüsse während des Verbundschmiedens
- Stoffschluss konnte durch Rasterelektronenmikroskop identifiziert werden
- Charakterisierung der Fügezone mittels Mikrohärtemessungen und EDX-Analyse

Fügezonenübersicht in Pkt. 1

Fügezonenübersicht durch REM

Fügezonenübersicht am Nanoindenter

Eigenschaften der Stahl-Stahl Radnabe

Eigenschaften

Stahl-Aluminium Radnabe

- Stahlseitige Zunderbildung verhindert die Umsetzung der angestrebten Fügestrategie
- Bildung spröder intermetallischer Phasen vom Typ Fe₂Al₅
- Phasensaumdicke überschreitet mit 16,33 μm zulässige Dicke von 10 μm
- Grundsätzlich reduzierte Bauteilfestigkeit ist zu erwarten
- Zeitabhängiger Spannungsabbau führt teilweise zur Trennung der Materialien

Stahl-Stahl Radnabe

- REM- und EDX-Analysen zeigen erfolgreiche Verbindung der beiden Stahlwerkstoffe
- Diffusionsvorgänge ebenfalls in den Grundwerkstoffen zu beobachten

Weitere Charakterisierung der Verbindungen mittels Torsions-, Biege- und Push-Out Versuchen

Eigenschaften

Vorgehensweise – Push-Out Versuche:

- Entnahme von scheibenförmigen Segmenten aus dem Fügeverbund
- Lagerung des Mantelwerkstoffes auf einem Ring
- Ausdrücken des inneren Werkstoffs durch das axiale Verfahren eines Stempels

Ergebnisse:

- Stahl-Aluminium Radnabe:
- Keine Prüfung möglich (Kein Werkstoffverbund)

Stahl-Stahl Radnabe:

13 bis 21 MPa (Formschluss) Verbundfestigkeit oberhalb 120 MPa (Stoffschluss)

Schematischer Aufbau der Push-Out Versuche

Eigenschaften

Torsionsversuche

Ergebnisse:

- Stahl-Stahl: max. Belastung bis 11.000 Nm (Versagensgrenze des Prüfstands, Erkennbares Versagen im Lagerwerkstoff)
- Monoradnabe: Prüfung nicht möglich

Biegeversuche

Ergebnisse:

- Stahl-Aluminium: Keine Prüfung möglich
- Stahl-Stahl: max. Belastung bis 9.500 Nm (Versagensgrenze des Prüfstands)
- Monoradnabe: Prüfung nicht möglich

Zusammenfassung und Ausblick

- Herstellung artfremder Radnaben mit lokal variierenden Mischverbund nur in einem kleinen Prozessfenster unter Schutzgasanwendung möglich
- Mögliche Reduzierung des Bauteilgewichts um ca. 1 kg
- Zunderbildung während des Halbzeugtransfers in die Umformmaschine vermeidet das stoffschlüssige Fügen im angestrebten Bereich
- Spanende Nachbearbeitung führt zum Bauteilversagen
- Keine Erfassung der mechanischen Eigenschaften möglich
- Lösung durch Neuauslegung der Vorformen

Stahl-Aluminium Radnabe (Halbschnitt)

Zusammenfassung und Ausblick

- Verbundschmieden der Stahlwerkstoffe nur bei Erwärmung und Zusammenführung in Schutzgasatmosphäre möglich
- Bereits geringe Zunderbildung verhindert das stoffschlüssige Fügen der Werkstoffe
- Teilweise geringe Spaltmaße vorhanden infolge der Schutzgaseinschlüsse
- Abhilfe durch Neuauslegung der Vorformen
- Chemische Zusammensetzung entspricht einer Kombinierung der Grundwerkstoffe
- Mechanische Eigenschaften der Fügenaht konnten nicht ausreichend erfasst werden
- Funktioneller Leichtbau und Performancesteigerung können in folgenden Forschungsvorhaben untersucht werden

Stahl-Stahl Radnabe (Halbschnitt)

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Ansprechpartner für Ihre Rückfragen:

Philipp Kuwert, M.Eng. Tel.: +49 (0) 511 762 2166 Tel.: +49 (0) 511 762 3007 kuwert@ifum.uni-hannover.de

Gefördert durch:

Vielen Dank für Ihre Aufmerksamkeit

Forschungsvereinigung Stahlanwendung e. V.

Forschungsgesellschaft Stahlverformung e. V.

Leichtbau am hybride Radnabe